Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP.
نویسندگان
چکیده
Errors in the mRNP biogenesis pathway can lead to retention of mRNA in discrete, transcription-site-proximal foci. This RNA remains tethered adjacent to the transcription site long after transcriptional shutoff. Here we identify Sus1, Thp1, and Sac3 as factors required for the persistent tethering of such foci (dots) to their cognate genes. We also show that the prolonged association of previously activated GAL genes with the nuclear periphery after transcriptional shutoff is similarly dependent on the Sac3-Thp1-Sus1-Cdc31 complex. We suggest that the complex associates with nuclear mRNP and that mRNP properties influence the association of dot-confined mRNA with its gene of origin as well as the post-transcriptional retention of the cognate gene at the nuclear periphery. These findings indicate a coupling between the mRNA-to-gene and gene-to-nuclear periphery tethering. Taken together with other recent findings, these observations also highlight the importance of nuclear mRNP to the mobilization of active genes to the nuclear rim.
منابع مشابه
The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability.
The eukaryotic THO/TREX complex, involved in mRNP biogenesis, plays a key role in the maintenance of genome integrity in yeast. mRNA export factors such as Thp1-Sac3 also affect genome integrity, but their mutations have other phenotypes different from those of THO/TREX. Sus1 is a novel component of SAGA transcription factor that also associates with Thp1-Sac3, but little is known about its eff...
متن کاملSus1, Cdc31, and the Sac3 CID Region Form a Conserved Interaction Platform that Promotes Nuclear Pore Association and mRNA Export
The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID...
متن کاملStructure of the Sac3 RNA-binding M-region in the Saccharomyces cerevisiae TREX-2 complex
Transcription-export complex 2 (TREX-2, or THSC) facilitates localization of actively transcribing genes such as GAL1 to the nuclear periphery, contributes to the generation of export-competent mRNPs and influences gene expression through interactions with Mediator. TREX-2 is based on a Sac3 scaffold to which Thp1, Sem1, Cdc31 and Sus1 bind and consists of three modules: the N-region (Sac3∼1-10...
متن کاملTranscription at the proximity of the nuclear pore: a role for the THP1-SAC3-SUS1-CDC31 (THSC) complex.
A key aspect of eukaryotic gene expression is the coupling of transcription with RNA processing, polyadenylation and export. The use of new techniques based on tandem affinity purification (TAP) and chromatin immunoprecipitation (ChIP), and of genetic and cell biology approaches has contributed to the beginning of deciphering the network of protein-mRNA interactions accompanying this coupling. ...
متن کاملSus1, a Functional Component of the SAGA Histone Acetylase Complex and the Nuclear Pore-Associated mRNA Export Machinery
Gene expression is a coordinated multistep process that begins with transcription and RNA processing in the nucleus followed by mRNA export to the cytoplasm for translation. Here we report the identification of a protein, Sus1, which functions in both transcription and mRNA export. Sus1 is a nuclear protein with a concentration at the nuclear pores. Biochemical analyses show that Sus1 interacts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2008